
Software Testing Plan

Student Code Online Review and
Evaluation

A terminal program and web-application for use in Florida Tech’s CSE
department to facilitate the submission of code for professor created

assignments.

Team Members:
Michael Komar - mkomar2021@my.fit.edu
Charlie Collins - ccollins2021@my.fit.edu
Logan Klaproth - lklaproth2021@my.fit.edu

Thomas Gingerelli - tgingerelli2021@my.fit.edu

Faculty Advisor / Client:
Dr. Raghuveer Mohan - rmohan@fit.edu

09/20/2024

mailto:mkomar2021@my.fit.edu
mailto:ccollins2021@my.fit.edu
mailto:lklaproth2021@my.fit.edu
mailto:tgingerelli2021@my.fit.edu
mailto:rmohan@fit.edu


Table of Contents

Table of contents - 1

1. Introduction

2. Test Plan

3. Functional Test

3.a Assignment Creation

3.b Assignment Deletion

3.c Assignment Submission

3.d Auto Test

3.e Immediate Feedback

3.f MOSS

3.g Grading Portal

3.h Canvas Integration

4. User Test

4.a Shell Client

4.a.1 Professor

4.a.2 Student

4.b Web App

4.b.1 Professor

4.b.2 Student



1. Introduction
This document describes the specific test cases that will be used to ensure the
application meets all of the specified requirements. To ensure we meet this goal,
the test cases cover using both the shell client as well as the web application.
Additionally, we cover the two different types of users, students and professors

2. Testing Plan
The test cases outlined in this document describe procedures that will test
specific parts of the application. Included in the document are both functional
and user test cases. Functional test cases are procedures that test specific
functions, and there should be at least one functional test case for each
requirement specified in the SRS. A user test case describes functions that a
tester should interact with to ensure the application is user friendly.

3. Functional Test

3.a. Assignment Creation
● Assignment name: Professor can add an assignment name

○ Test 1: On the web app, as a professor user, add a valid name in
the assignment name field. The new assignment, once created,
should have the inputted name.

○ Test 2: On the shell client, as a professor user, add a valid name
when prompted for the assignment name. The new assignment,
once created, should have the inputted name.

● Assignment description: Professor can upload a description for a new
assignment

○ Test 1: On the web app, as a professor, navigate to the assignment
creation page, select the upload assignment description, and
supply a .doc file. The file should be accepted.

○ Test 2: On the web app, as a professor, navigate to the assignment
creation page, select the upload assignment description, and
supply a .docx file. The file should be accepted.

○ Test 3: On the web app, as a professor, navigate to the assignment
creation page, select the upload assignment description, and
supply a .pdf file. The file should be accepted.

○ Test 4: On the web app, as a professor, navigate to the assignment
creation page, select the upload assignment description, and
supply an unaccepted file type. The file should be rejected and the
application should display an “Unsupported File Type” error.

○ Test 5: In the shell client, as a professor,using the assignment
creation command, select the upload assignment description, and
supply a .doc file. The file should be accepted.

○ Test 6: In the shell client, as a professor,using the assignment
creation command, select the upload assignment description, and
supply a .docx file. The file should be accepted.



○ Test 7: In the shell client, as a professor,using the assignment
creation command, select the upload assignment description, and
supply a .pdf file. The file should be accepted.

○ Test 8: In the shell client, as a professor,using the assignment
creation command, select the upload assignment description, and
supply an unaccepted file type. The file should be rejected and the
application should display an “Unsupported File Type” error.

● Number of Allowed Attempts: Professor can select the number of attempts
for a specific assignment

○ Test 1: On the web app, as a professor, navigate to the assignment
creation page, enter a positive integer into the Number of Attempts
field. The application should accept this input.

○ Test 2: On the web app, as a professor, navigate to the assignment
creation page, enter a non-positive integer into the Number of
Attempts field. The application should reject this input, revert back
to the default unlimited option, and display an “Invalid Input” error
message.

○ Test 3: On the shell client, as a professor, using the assignment
creation command, enter a positive integer into the Number of
Attempts field. The application should accept this input.

○ Test 4: On the shell client, as a professor, using the assignment
creation command, enter a non-positive integer into the Number of
Attempts field. The application should reject this input, revert back
to the default unlimited option, and display an “Invalid Input” error
message.

● Assignment Due Date: Professor can set the due date of the assignment
○ Test 1: On the web app, as a professor, navigate to the assignment

creation page, and enter a valid date into the due date field. The
application should accept this input.

○ Test 2: On the web app, as a professor, navigate to the assignment
creation page, and enter an invalid date into the due date field. The
application should reject input.

○ Test 3: On the client shell, as a professor, using the assignment
creation command, enter a valid date into the due date field. The
application should accept this input.

○ Test 4: On the client shell, as a professor, using the assignment
creation command, enter an invalid date into the due date field. The
application should reject input.

● Assignment Test Cases: Professor can create test cases
○ Test 1: On the web app, as a professor, navigate to the assignment

creation page, and click create new test case. In the input field,
enter text into the text box, in the output field, enter text into the text
box, in the feedback field, enter text into the text box, and set the
visibility to visible. The test case should successfully be created,
and the test case should be visible by a student user.



○ Test 2: On the web app, as a professor, navigate to the assignment
creation page, and click create new test case. In the input field,
upload a text file, in the output field, upload a text file, in the
feedback field, enter text into the text box, and set the visibility to
hidden. The test case should successfully be created, and the test
case should not be visible by a student user.

○ Test 1: In the shell client, as a professor, using the assignment
creation page, select create new test case. In the input field, enter
text into the text box, in the output field, enter text into the text box,
in the feedback field, enter text into the text box, and set the
visibility to visible. The test case should successfully be created,
and the test case should be visible by a student user.

○ Test 2: In the shell client, as a professor, using the assignment
creation page, select create new test case. In the input field,
upload a text file, in the output field, upload a text file, in the
feedback field, enter text into the text box, and set the visibility to
hidden. The test case should successfully be created, and the test
case should not be visible by a student user.

3.b Assignment Submission
● Student can submit file(s) to a valid assignment

○ Test 1: On the web app, as a student, navigate to a valid
assignment from the student dashboard, and click the submit
button. The assignment submission page should open.

○ Test 2: On the web app, as a student, navigate to the assignment
submission page. Upload a single python file and click submit.
The application should successfully submit the assignment.

○ Test 3: On the web app, as a student, navigate to the assignment
submission page. Upload multiple python files and click submit.
The application should successfully submit the assignment.

○ Test 4: On the web app, as a student, navigate to the assignment
submission page. Upload a single java file and click submit. The
application should successfully submit the assignment.

○ Test 5: On the web app, as a student, navigate to the assignment
submission page. Upload multiple java files and click submit. The
application should successfully submit the assignment.

○ Test 6: On the web app, as a student, navigate to the assignment
submission page. Upload a single C/C++ file and click submit. The
application should successfully submit the assignment.

○ Test 7: On the web app, as a student, navigate to the assignment
submission page. Upload multiple C/C++ files and click submit.
The application should successfully submit the assignment.

○ Test 8: On the web app, as a student, navigate to the assignment
submission page. Upload an unsupported file type. The
application should reject the file and display an “Unsupported file
type” error message.



○ Test 9: On the web app, as a student, navigate to the assignment
submission page. Upload a folder or compressed archive. The
application should reject the file and display an “Unsupported file
type” error message.

○ Test 10: On the web app, as a student, navigate to the assignment
submission page. Upload as many submissions as the assignment
allows. The submit button should no longer be clickable.

3.c Assignment Deletion
● Professor can delete an assignment

○ Test 1: On the web app, as a professor, navigate to the assignment
dashboard, click on an assignment, then select delete. A delete
confirmation window should appear.

○ Test 2: On the web app, as a professor, on the delete assignment
confirmation window, select confirm. The assignment should now
be deleted and no longer show up on the professor or student
dashboard.

○ Test 3: On the web app, as a professor, on the delete assignment
confirmation window, select cancel. The assignment should not be
deleted and remain on both the professor and student dashboard.

3.d Auto Test
● Assignment submissions are graded upon being received.

○ Test 1: On the web app, as a student, navigate to a valid
assignment with an associated auto test, and submit a valid python
file. The application should run the auto test and display the
results.

○ Test 2: On the web app, as a student, navigate to a valid
assignment with an associated auto test, and submit a valid java
file. The application should run the auto test and display the
results.

○ Test 3: On the web app, as a student, navigate to a valid
assignment with an associated auto test, and submit a valid C/C++
file. The application should run the auto test and display the
results.

○ Test 4: In the client shell, as a student, using the submit assignment
command, navigate to a valid assignment with an associated auto
test, and submit a valid python file. The application should run the
auto test and display the results.

○ Test 5: In the client shell, as a student, using the submit assignment
command, navigate to a valid assignment with an associated auto
test, and submit a valid java file. The application should run the
auto test and display the results.

○ Test 6: In the client shell, as a student, using the submit assignment
command, navigate to a valid assignment with an associated auto
test, and submit a valid C/C++ file. The application should run the
auto test and display the results.

3.e Immediate Feedback



● Upon failing a test case, the student should receive the associated
feedback.

○ Test 1: On the web app, as a student, navigate to a valid
assignment that has an auto test with feedback. Submit code that
fails a test case. The application should display the associated
feedback for that test case.

○ Test 2: On the web app, as a student, navigate to a valid
assignment that has an auto test with feedback. Submit code that
passes all test cases. The application should not display any
professor feedback.

3.f MOSS
● The professor should see submissions flagged for similarity.

○ Test 1: From multiple student accounts, submit different files to the
same assignment. Let the assignment due date pass. In the web
app, as a professor, the application should not display that any of
the submissions have been flagged.

○ Test 2: From multiple student accounts, submit the same file to the
same assignment. Let the assignment due date pass. In the web
app, as a professor, the application should underline and change
the font to red for each submission and display a warning flag next
to them.

3.g Grading Portal
● After the assignment due date has passed the grading portal should

display the grades of the student submissions.
○ Test 1: From multiple student accounts, submit to the same valid

assignment. Let the assignment due date pass. As a professor,
navigate to the grading portal of the assignment. The application
should display each submission, along with the associated scores
and grades.

○ Test 2: As a professor, navigate to the grading portal of an
assignment. In the grade field, click on the current grade. Enter a
new grade. The assignment should now display that as the grade.

3.h Canvas Integration
● Grades should get uploaded to Canvas

○ Test 1: As a professor, navigate to the grading portal of a valid
assignment. Click the Upload to Canvas button. The assignment
page on Canvas should now be populated with matching grades
from the grading portal.

4. User Test
4.a Shell Client

● Test 1 (Professor): A professor should use the application’s shell client to
interact with the following features: creating an assignment, deleting an
assignment, viewing the grading portal, and pushing the grades to
Canvas. The tester will then be asked if they were able to accomplish
each task, and to rank the ease of completing each task.



● Test 2 (Student): A student should use the application’s shell client to
interact with the following features: submit an assignment, view auto test
score, and view submission feedback. The tester will then be asked if
they were able to accomplish each task and to rank the ease of
completing each task.

4.b Web App
● Test 1 (Professor): A professor should use the application’s web app

interface to interact with the following features: creating an assignment,
deleting an assignment, viewing the grading portal, and pushing the
grades to Canvas. The tester will then be asked if they were able to
accomplish each task, and to rank the ease of completing each task.

● Task 2 (Student): A student should use the application’s web app interface
to interact with the following features: submit an assignment, view auto
test score, and view submission feedback. The tester will then be asked if
they were able to accomplish each task and to rank the ease of
completing each task.


